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Abstract—The deformation of a thin circular ring of uniform thickness contained in a rigid circular cavity with
small initial clearance between the ring and cavity is considered. The displacement of the ring produced by an
acceleration of the rigid cavity in the plane of the ring is analyzed using nonlinear bending theory. Steady state
acceleration only is considered so that the inertia forces can be treated as static loads. Variables considered are
initial clearance, ring thickness and acceleration magnitude. The friction between the ring and cavity is assumed
to be zero. A closed-form solution to the linear portion of the governing differential equations is given. A numerical
solutton is obtained to the nonlinear differential equations, and a particular ring-cavity geometry is studied using
this numerical solution. Results are compared with a ring-cavity system having zero clearance. The comparison
shows the effects of clearance on the ring-cavity system and indicates the sharp reduction in critical load due to
small initial radial clearance.

INTRODUCTION

RECENT studies by Zagustin and Herrmann [1] and Pian and Bucciarelli [2] treated the
buckling of a radially constrained circular ring subjected to in-plane inertia loading, when
there is no initial clearance between the ring and the enclosing structure. The present
investigation specifically examines the influence of a small radial clearance between ring and
enclosure. The distinction can be of significance in the analysis of constrained cylindrical
structures subjected to sudden lateral displacement.

The deformation of a thin circular ring of uniform thickness contained in a rigid circular
cavity is considered. The displacement of the ring produced by an acceleration of the rigid
cavity in the plane of the ring is analyzed. Steady state acceleration is considered, and the
inertia forces are treated as static loads. In the initially undeformed state the ring has one
point of contact with the cavity. When the system is accelerated, the ring deforms and a
segment of the ring comes into contact with the cavity as shown in Fig. 1. As the loading is
increased, the length of this contact segment increases until a critical value of the load is
reached and the ring collapses.

The system is analyzed by use of nonlinear bending theory for the ring deformation.
Variables considered are initial clearance between ring and cavity, ring thickness and
acceleration magnitude. The friction between the ring and cavity is assumed to be zero, and
the ring material is assumed to remain elastic.
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ANALYSIS

The analysis of the system is carried out by use of a semi-inverse method. An angle to
contact @(Fig. 1)is specified and the nondimensional inertia load factor y which would cause
the system to have this angle to contact is sought. This approach permits the ring to be
separated into two segments, an upper segment which is independent of the cavity constraint,
and a lower segment which is constrained by the cavity. The solution for the system is
achieved by enforcement of the appropriate compatibility relations at the point of contact @.

The lower ring segment is treated as a circular arch subjected to steady state acceleration
and constrained by the rigid cavity in such a way that its radius in the deformed shape is
equal to that of the cavity. The upper ring segment is considered to be subjected to the
same steady state accleration, but to be constrained only at its terminal points by the lower
ring segment.

The governing nonlinear differential equations are applicable to what Novozhilov [3]
has called “‘intermediate’” bending of thin rings. Their formulation is carried out by deriving
strain-displacement relations for small strains and moderately-small rotations, and relating
the strain at any point in the ring to centroidal-surface displacement components by use of
the Kirchhoffapproximations. Constitutive relations are based on Hooke’slaw. Equilibrium
equations are derived by summation of forces and moments on a ring element in a slightly
deformed configuration. The kinematic relations, constitutive relations and equilibrium
equations are combined to yield a set of two nonlinear ordinary differential equations in
terms of displacement components and load.
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Assumptions made in the analysis are the following:

The ring deforms symmetrically with respect to the vertical axis.
There is no friction between ring and cavity.

The thickness—radius ratio (h/a) of the ring is much smaller than unity.
The hoop strains ¢ and rotations w are much less than unity.

The cavity material is rigid and the ring material behaves elastically.
The loading is static, i.e. not a function of time.

The ring has a rectangular cross-section (and is of unit width).

Nk W=

KINEMATIC RELATIONS

Let r and ¢ denote the radial and circumferential coordinates of an arbitrary point in the
undeformed ring, 7, w the tangential and radial displacement components of that point,
and & the extensional strain of a circumferential line element. For & small compared with
unity the relation between strain and displacements is readily shown to be (e.g. Ref. [4],

equation (14)):
_ v —-w\ 1o -w\?* 1{o+w)\2
o= ()l W

where primes denote differentiation with respect to ¢.
For moderately small rotations, from Fig. 2,

i+ w
—

(E:

(2

For both £ and & small compared with unity, the first quadratic term in equation (1) may be
neglected (we exclude from consideration cases in which #" or w are of the magnitude of the
radius r or larger) and that equation simplified to the form:

7—w\ 1fp+w)?
)+5 . (3)
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Ring bending theory is based on the simplifying approximation that normals to the
undeformed centroidal surface remain straight, normal and inextensional during the
deformation. Therefore, from Fig. 3, displacement components &, % may be expressed in
terms of the corresponding displacements &, w of a point on the centroidal surface by the
relations
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Fi1G. 3. Normal to ring centroidal surface.

where w represents rotation at a point on the centroidal surface and is small compared with
unity. From equation {2),
oW .
0 = (5}
4
Introduction into equation (3), rearrangement and observation that r = a for a thin ring
give

FIE S AT B (6

[1t may be seen from equations (2}, (4) and (5) that & = @.]

The extensional strain ¢ of a circumferential line element on the centroidal surface is
obtained by setting z = 0inequation (6). The curvature change « of a centroidal line element
may be defined as the rate of change of the rotation « in the circumferential direction.
Therefore, equation (6) can be written

£ = g—2IK {73

where
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and

v +w”
o= 1EY ©)
a

The « is positive when the radius at a point on the centroidal surface decreases.

CONSTITUTIVE EQUATIONS

For an elastic material the relation between the stress & and strain & is expressed through
Hooke’s law as

G = E& {10)

where the constant E represents Young’s modulus. Definition of the stress resultant N and
the moment M in the usual manner leads to the relations

N = EAe, M = —Elx (11)

where I is the cross-sectional moment of inertia. With the sign convention used here, a
positive moment causes an increase in radius.

On substituting the relations for e and x into equation (11) the values for N(¢) and M(¢)
can be expressed in terms of centroidal-surface displacement components as follows:

Y "\ 2
N(g) = EAI: ‘—a-“f) +%(”J;w) J (12)
and
Mi(¢) = —51(5’_‘:2“’,). (13)

GOVERNING EQUILIBRIUM EQUATIONS

The governing nonlinear differential equations of equilibrium are derived by applying
the equations ) F = M = 0 to an element of the deformed ring. The ring element is in
a state of equilibrium under the action of external loads and internal forces, as shown in
Fig. 4. The equations are expressed in terms of the undeformed coordinate system, and
simplifying approximations are made in these equations which are consistent with the
assumptions of small elongations and moderately small rotations.

Since steady state acceleration is considered here, the inertia forces may be treated as
static loads. Thus the loading dP on the ring element can be expressed in terms of the un-
deformed geometry as

dP = ypAdS = ypAad¢ (14)

where p, A and dS are weight density, area and element length of the undeformed element.
The force p(¢) dS* is the foundation reaction and acts only in the range ® < ¢ < 7.
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Summation of forces in the tangential and normal directions and summation of the
moments yield the following three equations of equilibrium :

N'-—N(‘:)—~Q—»paw{l +(2;'WH +ypAasin¢g = 0 {15
p—w )

(Nw)’%»N#—Q’%—pa[l +(*~~;~«H +ypAacos ¢ =0 {16}
M —-Qa=20 {amn

where N, M and Q are centroidal hoop force, bending moment and tranverse shear force,
respectively. In these equations sin @ and cos w are replaced by w and unity, respectively,
and quadratic terms representing products of the small quantities Q and w or @ and ¢ are
neglected. The latter approximation is consistent with those utilized in the derivation of the
kinematic relations, i.¢. that normals to the centroidal surface remain straight and normal
during the deformation. Such terms are missing from the outset when the equilibrium
equations are derived variationally from a potential energy expression in which the
strain energy due to transverse shearing strains is neglected (Ref. [5]).
Elimination of Q from equations (15) and (16) by use of equation (17) yields:

1 . ;
N'~Nw~aM’—pa«)+ypAasmq{>:0 {18)

and
N+{Nco)’+éM"+p(a+v’~w}+y;}Aa cos ¢ = 0 {19}
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where cubic terms (but not quadratic terms) representing products of the small quantities
p. w and (v — w)/a have been neglected. Transformation of the above equations into
functions of displacement components yields the following two nonlinear differential
equations:

1
a@" —w)+@+w) v +w) =0 —w)(v+w)— z(u +w')? + ka(v” +w")

2

3
*%%w+wq+wm

E

sin¢ = 0 (20)
and

V" —wHv+w)+ %(v +W PO + W)+ —w) ' +w)+a(t —w)+ o +w)?

2 3
~MWWMWH%%%w%ng§mm¢=Q 21)

where k = I/(a*A).

Equations{20)and {21) are the governing equilibrium equations in terms of the displace-
ment components v, w, the foundation reaction p and the load factor y. The same equations
also have been derived on the basis of stationary potential energy theory in Ref. [5].

UPPER RING SEGMENT

The upper ring segment consists of that portion of the ring not in contact with the
cavity, i.e. the part in the region 0 < ¢ < ®. The two governing differential equations are,
from equations (20) and (21),

ypa®

kwf/r_wr+(1+k)v”+mE__sin¢ = P] (22)
and
2
kwm} +w+ kvm—vj""l%a_ cos qs = P2 (23}

where P1 and P2 represent the nonlinear terms in the respective equations and are given by :
1 i 1" 1 n3
Pl = —;(v+w)(w+w)+?(v+w) (24
and
I " ¥ ’ 1 ’ i ” 1 n2 3
P2 = E(U —wiv+w )+E(U —wi{v' +w )+2—a(v+w Y1 +;(v’+w") . (25)

The boundary conditions at the top centerline, ¢ = 0, are, from symmetry,

vp=w=¢"+w" = 0. {(26)
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At the point of contact, ¢ = @, the displacement components (kinematic boundary
conditions) for v, w and w’ must be matched to those of the lower ring segment. Supple-
mental conditions to be fulfilled at this point are that the internal forces N and M (static
boundary conditions} must be compatible with those of the lower ring segment. In Ref. [5]
the same kinematic and static boundary conditions for the upper ring segment were
obtained variationally.

Having found v and w, the internal hoop force, moment and shear can be found by
using the constitutive relations, equations {12) and (13}, and the equilibrium equation {17).
ie.

) 3 W N s 2"
Ny = Eal [0 L Herw 27
\ a 2V »
o
M(g) = — ,31(1..._{.;;?_‘ ) (28)
and
v’ 4w
Qo) = ﬁEI(",;.\at{ ) (29)

LOWER RING SEGMENT

The lower ring segment consists of that portion of the ring in contact with the cavity,
i.e. that part in the region ® < ¢ < n. The two differential equaticns to be satisfied in
order to describe the forces in this ring segment are, from equations (18} and (19),

| . y
N —No—-M'—paw+ypAasin g = 0 (30
u

1
N+ (Nwy +-M"+platv —w)+yphacos ¢ = 0. (3h
a

They differ from those for the upper ring segment in that they contain the cavity reaction

force p(¢).
In this segment of the ring both the deformed and undeformed shape are known. This

allows for some basic kinematic relations to be derived. An exact relation for ¢ in terms of
rotation  is developed using Fig. 5 to give

R ' ,
L= -+ f (32)
a d

where f = R—a. Exact relations for v and w in terms of rotation v are, from Fig. 5,

s
>3
el

p = Rsinw—{sing (3:
and

w = a— R cos w— [ cos ¢. {343
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The change in curvature x is known in terms of the undeformed radius a and the
deformed radius R, ie.
11 f

= — = —", 35
K R a aR (35)

Combining equation (35) with (11) gives for the bending moment in the lower ring segment
the expression

El
m=2

- (36)

On substituting equation (36) into (17) the shear force Q of course is found to be @ = 0.

The principal interest of this problem lies in the case in which the original ring clearance
is small compared with the radius. Hence, the lower ring segment has relatively small
rotations, and its analysis may be satisfactorily treated as linear. Thus from equations (30)
and (31) the two governing linear differential equations become

N +ypAasing =0 (37
N+pa+ypAacos ¢ = 0. (38)

On recalling that N = EAe, the differential equations may be written

g+ %ing =0 (39)
E
e+ 22 VP8 o5 = 0. (40)

EA E
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Equations (32) and (39) yield a second order differentia! equation for the rotation.
. ypa’sing
0" = At
£ R {41
Integration of this equation twice gives an expression for ® in terms of two integration
constants D, and D, :

, _pa’ cos ¢ ,
W P _}é -+D, {42)
and
a* sin
WASING bbb, (43)
At ¢ = 7, w(n) = 0 from symmetry, so that D, = — Dz, and the rotation in the lower

ring segment is

e8]

Ay az Sln .
(@) = "= 7—‘%0@_@, (44)

where D has been used in place of D, . From equations (44) and (32),

" D '
e =P ¢+~~+f (45)
E a

From equations (40) and (45) the foundation reaction force is

pa vpa RD f
= 2 7 4
EA E cos ¢ g a (46)
Using equation (45) the hoop force is
N pa RD f‘
R i Ir 7
FA- £ °© ¢>+ + 47)

The expressions for v and w in equations (33) and (34) give
v = Rw—fsin¢ (48)
and
w = — f{l+¢os ¢} {49)
Substitution of equations (44) into (48) gives v in terms of y and D:

p=ﬂ§£m¢+km¢_mfmm¢. (50)

In summary, the lower ring segment can be described in terms of the load factor y and
a constant D (which must be evaluated in combination with the upper ring segment) by
equations (36), (44), (46), (47), (49) and (50).
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LINEAR CLOSED-FORM SOLUTION

A linear closed-form analysis for the overall system is made by linearizing the governing
differential equations for the upper ring segment and combining the solution of these
linearized equations with that for the equations governing the lower ring segment.

On neglecting the nonlinear terms in equations (22) and (23) a set of linear non-homo-
geneous equations is obtained for the upper ring segment from which the variables can be
uncoupled. The linearized differential equations are

kw"” —w' +(1+ k" = —V’;“z sin ¢ (51)
and )
kw™ - w+ kv — ' = y’%cos é. (52)
The solutions to these two equations are
M (1+k)

w(p) = C; +C,sin dp+C;cos ¢+ Cydsin p+ Csep cos ¢ — ¢2cos ¢, (53)

E 4k
and
p) = Ce+C,p—C, cos ¢+ Cysin ¢

+C4U%) sin ¢ — ¢ cos (i)] +C5Hi;+:) cos ¢+ ¢ sin ﬁb}
vl lk—1 1+3k Y . 1+k ;
+N§z {(7)45008 o+ m) sin ¢—<—%)¢2 sin 4’] (54)

where the unknowns C,, C,, C;, Cy, Cs and C, are to be evaluated from the boundary
conditions at ¢ = 0 and ¢ = ®.

Application of the boundary conditions at ¢ =0, ie. v =0, w' = 0 and v"+w” = 0
gives

C,=Cs=Cg=0. (55)

Satisfaction of the three displacement compatibility relations at ¢ = @, i.e. those on
v, w and w’, and the two force compatibility relations on N and M results in five non-
homogeneous algebraic equations in the three unknown integration constants C 1.C5,C,
and the two unknowns from the lower ring segment, y and D:

. I—k
C®+C;ysin <D+C4Um) sin @—®cos (D]

ypa®| [k—1 k+1 . .
+ [( )(Dcos(l)—(_)(D2 sin ®—51n<1):'+DR(7:—<I)) = —fsin@d (56)

E 2k 4k
. a{1+k
Ci+Cyco8d+C,Psin CD—%(%)QZ cos® = — f(1+cos ®) (57)
C.si i ypa*{1+k 5 .
38In @ —C (P cos O+sin By + RS 2O cos P—P*sind) = ~ fsind {58)

2k 2 . k—
C4(l+k) cos®+z’£':®smd)+——l~cos®:|+DR = —f (59)

E 200+k)
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and

R

)

2 ypa*| 1 k—1
C1+C4() cos<D+"0Fa[v(Dsin(D+( o

df
L - - (6()
+k * 2h(1+4) COS(D} o

The simultaneous solution of these five equations yields values for the unknowns with
which the displacement components and forces can be determined.

In Ref. [5] the linear analysis of the upper ring segment equations is carried out using
the linearized form of the differential equations (18) and (19) to determine N(¢) and M(¢)
and then using the linearized kinematic relations to find the displacement components v, w.
The analysis yields complex but uncoupled expressions for N, M, ¢, w, 7y and D as functions
of ® and ¢.

NONLINEAR NUMERICAL SOLUTION

The linear closed-form solution for the lower ring segment is combined with 4 numerical
nonlinear analysis of the upper ring segment to yield an overall solution to the deformation
of the ring for moderately large deformations. The numerical analysis is carried out using a
Newton—Raphson algorithm in conjunction with finite differences.

Transformation of the governing differential equations, equations (22) and (23). into
a set of nonlinear algebraic equations is made using five-point central difference equations
in the Lagrangian form [6]. Boundary conditions at the top centerline ¢ = 0 are trans-
formed using central difference equations and symmetry. Boundary (matching) conditions
at the point of contact ¢ = ® are transformed using backward sloping difference equations
and the linear closed-form solutions for displacement components from the lower ring
segment solution. The two-point boundary value problem is thus transformed into a set
of 2N +9 nonlinear algebraic equations in 2N +9 unknown quantities, where N is the
number of pivotal points in the interval [0, ®]. A detailed account of the numerical analysis
can be found in Ref. [5].

The set of equations, expressed in matrix notation, may be written as

Ax = B+ P(x) {61)

where A is a square matrix of the coefficients of the linear unknown terms, x is a column
matrix of the unknown quantities (displacement components, loading function y and
constant D), B is a column matrix of known terms and P(x) is a column matrix of the non-
linear terms in the unknown displacement components.

Prior to consideration of the nonlinear terms P(x), an investigation of the accuracy of
the computer solution to the set of linear equations

Ax = B (62)

is made with regard to the effect of significant figures and the number of pivotal points used.
Equation (62) is programmed in a machine code and a solution is obtained by an inversion
of matrix A4 using a Gauss-Seidel iteration scheme. Calculations are carried out for a ring
having a/h equal to 100 and an initial radial clearance f/a equal to 0-00143. Using this
program, the angle to contact @ is held constant, the number of pivotal points is varied,
and the resulting solutions are compared with the linear closed-form results. A plot of the
numerical results for the top centerline displacement and the inertial load factor y vs. the
number of pivotal points for ® = 90° is shown in Fig. 6. This comparison indicates that it
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F1G. 6. Centerline displacement and inertial load factor vs. number of pivotal points.

is necessary to use double precision accuracy (14 significant figures) and to maintain a
spacing between pivotal points equal to or less than 0-030 rad. in order to achieve numerical
results to within 1 per cent of the linear closed-form solution.

The unusual accuracy required and the large number of pivotal points necessary to
obtain a numerical solution to the equations are results of the highly coupled nature of the
equations and of the ring-cavity geometry used. Complete coupling of the algebraic equa-
tions occurs through the inertial load factor y, and the thickness parameter k in the numerical
example has an order of magnitude of 1077,

For solution of the nonlinear problem represented by equation (61), the nonlinear differ-
ence equations are programmed in a machine code and a Newton-Raphson algorithm [7]
is coded and used to solve the equations. This solution also is carried out for the ring having
a/h equal to 100 and an initial radial clearance f/a equal to 0-00143.

For the necessary initial approximation to the solution to the difference equations,
the linear values obtained from the numerical solution of equation (62), for a value of
@ = 50°, are used. A nonlinear solution for this @ is then obtained. A small increment of ®
i1s made and the starting values for the new @ are the nonlinear values obtained for the
previous @. This step-by-step procedure is repeated until the critical load is obtained. The
size of the increment of ® is governed by the number of iterations necessary to converge to
within the desired accuracy. The algorithm gives an accuracy of convergence to within
three significant figures.

RESULTS AND CONCLUSIONS

Results of the solution are shown in Figs. 7 and 8. In Fig. 7, a plot of load factor y vs. top
centerline displacement component w, is presented. Also shown for comparison is the
result of the zero clearance solution given in Ref. [1]. This figure indicates that an initial
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radial clearance equal to 0-143 per cent of the initial ring radius causes a 33 per cent decrease
in critical load relative to the zero-clearance case.

In Fig. 8, a plot of angle to contact ® vs. top centerline displacement component w, is
shown along with the above-mentioned zero clearance solution. This figure indicates that
the critical load is reached before the minimum angle to contact is reached, and, as expected,
that the initial clearance solution approaches the zero clearance solution for large values of
Wo.

1t is concluded that for such a ring-cavity system, a small initial radial clearance sharply
reduces the critical load.
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AberpakT—Hcecnenyercs gedopmanus TOHKOTO, KPYITIOro KOABLA, NOCTOAHHON TONUIMHDI, HAXOAAEELOCH
B KECTKOW XPYIJIOH HOJIOCTH, ¢ MAJIbIM HAYAILHBIM 3330PDOM MEKIAY KONBLOM M HONOCTHIO. Mcnons3ys
HeankeHinyto Teopuio niruba, JASTCa aHAaIN3 HEPEMEILCHHs KOJbLA, BBI3BAHHOTO YCKOPEHHEM XKeCcTKOM
MOJIOCTH B IVIOCKOCTH KOJIBLA. YYWTBIBAETCS TONBKO CTAIMOHAPHOE YCKOPEHHE TAK, YTO CHIIbI MHEPLIAH
MOKHO PACCMATPHUBATH B CMBIC/IE CTATHYECKOR HATPY3ku. PacMaTpuBaeMbIMK MEPEMEHHBIMH SBNSIOTCH

HauaibHBIH 330D, TOMUMHA KOABLUA U Benuuuna yckoperus. [lpenrnosaraeTs HyneBoe TperHe MeXAY
KOJIBLOM ¥ ONOCThI0, JaéTes peilieHne B 3aMKHYTOM BHAE, TIO OTHOMISHUH K IMHEHHOM YacTu ONPEACNAIO-
wux puddepenunanbupix ypashenni, Mccnenyercs nogpoGHO TEOMETPHS KONUA H IONOCTH, nyTéM
MCHOJIB3OBAHUSA MHCICHHOTO pelneHds. Pe3yibTaTet CPaBHHBAIOTCS C CHCTEMON KOJBIA C HYJIEBBIM
3a30poM. CpaBHenue yKaspisaeT 2hdEKThE 32302 10 OTHOWEHHH K CHCTEME KONBLUO-NIONPCTE ¥ 3HAYHTE B
HBIC YMEHILICHHE KPHTHYCCKON HATPY3KH, BCIEACTBAE MAsIoT0 Ha4albHOro PANMabHOTO 3a30pa.



